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Abstract. Morphology generation is the natural language processing task of
generating word inflection information. In this paper, we propose a new
classification architecture based on deep learning to generate gender and
number in Spanish from non-inflected words. This deep architecture uses a
concatenation of embedding, convolutional and recurrent neural networks. We
obtain improvements compared to other standard machine learning techniques.
Accuracy of our proposed classifiers reaches over 98% for gender and over 93%
for number.
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1 Introduction

Morphology generation consists in generating the inflection information of a word. For
example, given a lemmatized sentence like El casa pequeño in Spanish, a morphological
generator would output La casa pequeña. Generally speaking, a morphological
simplified text allows to reduce vocabulary specially in highly inflected languages.
There are many natural language processing tasks and other related applications that
can benefit from morphology generation to boost its performance. There have been
many works in morphological generation and some of them are in the context of the
application of machine translation.

Most of the works for this application translate to a morphologically simplified
target, and then use some morphological generation technique to find the final output.
To name a few, for example, [15] build maximum entropy markov models for inflection
prediction of stems; [3, 10] use conditional random fields (CFR) to predict one or
more morphological features; and [6] use Support Vector Machines (SVMs) to predict
verb inflections.

A different but related task is the one of Part-of-Speech (PoS) tagging which
aims at labelling words with its corresponding syntactic role. For this task, the form
of the word is not simplified, so the form itself contains much more information
than in the task of morphology generation. In this field the number of works is
huge, but most related works to our own would be: [8] where authors train a model
to predict each individual fragment of a PoS tag by means of machine learning
algorithms; [4] where authors propose a deep learning architecture for English PoS
tagging; and [11] where authors perform fine-grained PoS tagging with feedforward

131

ISSN 1870-4069

Research in Computing Science 147(1), 2018pp. 131–140; rec. 2017-02-10; acc. 2017-04-12



Table 1. Examples of text representations.

Model Text
Original La casa de la playa
PoS & Lemma DA0FS0[el] NCFS000[casa] SPS00[de] DA0FS00[el] NCFS000[playa]
Simplified Text DA00[el] NC000[casa] SPS00[de] DA00[el] NC000[playa]
Simplified-Gender DA0S0[el] NCS000[casa] SPS00[de] DA0S0[el] NCS000[playa]
Simplified-Number DA0F0[el] NCF000[casa] SPS00[de] DA0FS[el] NCF000[playa]

and bidirectional recurrent architectures. In this paper, we focus on the task of
generating morphological attributes for a particular task and we propose a deep
learning architecture which concatenates embedding, convolutional and recurrent
neural networks. This architecture is particularly tested on generating number and
gender for the Spanish language.

The inputs to our system are lemmas and their corresponding fine-grained PoS tag
where information of number and gender has been removed. Given the nature of our
architecture, it could be further generalized to generating the fine-grained PoS tag
from lemmas and for any language. The rest of the paper is organised as follows.
Section 2 describes the morphology generation architecture. Section 3 details the
experimental framework and section 4 reports accuracy of the classifier compared to
other state-of-the-art techniques. Finally, section 5 highlights main achievements of
this work.

2 Morphology Generation Architecture

This section reports which is the input data to our task, it describes which is the
architecture proposed and it explains the motivation of this architecture.

2.1 Input Data

To train our system we start from a Spanish corpus and we use a morphological analyzer
to remove the information of gender and number. Table 1 shows an example. Given our
simplified text in gender and number, we propose to train two different models: one
to retrieve gender and another to retrieve number. Each model decides among three
different classes. Classes for gender classifier are masculine (M ), femenine (F ) and
none (N ); and classes for number classifier are singular (S), plural (P ) and none (N ).

2.2 Description

Inspired by previous Collobert’s work [4], as features for our classifier we use windows
of words as input. Each word is represented by a fixed size window of words in which
the central element is the one to classify.

Figure 1 shows an example of windows of length 3. Note that in the example “de”
does not have a window assigned because this word is invariant in gender and number.
Following the example, our classifiers do not have to train all types of words. Some
types of words, such as prepositions (a, ante, cabo, bajo, de...), do not have gender or
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Fig. 1. Text to window representation.

Fig. 2. Neural network overview.

number. Therefore our system was trained for determiners, adjectives, verbs, pronouns
and nouns which are the ones that present morphology variations in gender or number.
However, note that all types of words are used in the windows.

We base our architecture also in Collobert’s proposal [4] and we modify it by adding
a recurrent neural network. This recurrent neural network is relevant because it keeps
information about previous elements in a sequence and, in our classification problem,
context words are very relevant.

As a recurrent neural network, we use a Long Short Term Memory (LSTM) [9] that is
proven to be efficient to deal with sequence NLP challenges [14]. This kind of recurrent
neural network is able to maintain information for several elements in the sequence and
to forget it when needed. Figure 2 shows an overview of the different layers involved in
the final classification architecture, which are detailed as follows:

Embedding. We represent each word as its index in the vocabulary, i.e. every word is
represented as one discrete value:

E(w) = W,W ∈ Rd. (1)

w being the index of the word in the sorted vocabulary and d the size of the array.
Then, each word is represented as a numeric array and each window is a matrix. This
process is trained as part of the neural network architecture.
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Table 2. Corpus details.

Sentences Words
Training 58,688 2,297,656
Development 990 43,489
Test 1010 44,306

Convolutional. We add a convolutional neural network. This step allows the system
to detect some common patterns between the different words. This layer’s input consists
in a matrix W l of multidimensional arrays of size n · d, where n is the window length
(in words) and d is the size of the array created by the previous embedding layer. This
layer’s output is a matrix of the same size as the input.

Max Pooling. This layer allows to extract most relevant features from the input data
and reduces feature vectors to half.

LSTM. Each feature array is treated individually, generating a fixed size
representation hi of the ith word using information of all previous words (in the
sequence). This layer’s output, h, is the result of the last element of the sequence using
information from all previous words.

Sigmoid. This layer smoothes results obtained by previous layer and compresses
results to the interval [−1, 1]. This layer’s input is a fixed size vector of shape 1 · n
where n is the number of neurons in the previous LSTM layer. This layer’s output is a
vector of length c equal to the number of classes to predict.

Softmax. This layer allows to show results as probabilities by ensuring that the
returned value of each class belongs to the [0, 1) interval and all classes add up 1.

2.3 Motivation

The input data of the classification algorithm is morphogically simplified in terms
of gender and number. This simplification largely reduces the information that can
be extracted from individual words in the vocabulary. In addition, we can encounter
out-of-vocabulary words for which no morphological information can be extracted.

The main source of information are the context words. The information of a word
consists in itself and the words that surround it (a window of words). Sometimes
relevant information preceeds the word and sometimes information is after the word.
Words (like adjetives), which are modifying or complementing another word, generally
take information from preceeding words.

For example, in the sequence casa blanca, the word blanca could also be blanco,
blancos or blancas but because noun and adjective are required to have gender and
number agreement, the femenine word casa forces the femenine for blanca. While,
for example, determiners usually take information from posterior words. This fact
motivates that the word to classify has to be placed at the center of the window.

Finally, the fact that we rely only on the context information (since words themselves
may not have any information) makes the recurrent neural network a key element
in our architecture. The output h of the layer can be considered a context vector of
the whole window maintaining information of the previous encountered words (in the
same window).
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Table 3. Distribution of the gender classes in the corpus.

Set Word Type Total Femenine(%) Masculine(%) None(%)

Train

Determiners 340.739 53,24 38,36 8,40
Nouns 571.053 52,19 46,52 1,29
Verbs 219.638 14,24 12,75 73,01
Pronouns 43.806 4,28 6,91 88,81
Adjetives 185.107 21,69 24,14 54,17

Development

Determiners 6.534 51,18 41,20 7,62
Nouns 11.025 51,39 46,78 1,83
Verbs 5.630 11,10 13,20 75,70
Pronouns 1.079 3,89 6,12 89,99
Adjetives 3.129 60,95 38,69 0,36

Test

Determiners 6.858 52,07 40,76 7,17
Nouns 11.347 51,72 46,56 1,72
Verbs 4.629 12,18 13,23 74,59
Pronouns 1.015 4,24 7,39 88,37
Adjetives 3.375 24,68 24,21 51,11

3 Experimental Framework

This section reports the dataset used for experimentation together with its
preprocessing. We also detail which are the parameters used for the final
architecture configuration.

3.1 Data, Preprocessing and Software

As data, we use a subset of the United Nations Corpus [13]. Corpus statistics are
shown in Table 2. Corpus preprocessing consisted in tokenization and lowercasing.
PoS tagging was done using Freeling [12]. All chunking or name entity recognition
was disabled to preserve the original number of words.

With the Freeling information, we represent each word with its PoS tag and lemma.
From each PoS tag, we remove gender and number information to create the simplified
text representation. For example, the word La becomes DA0FS0[el], where F indicates
its gender (femenine) and S its number (singular). This word is simplified to DA00[el].
A consequence of this new representation is that the determiners el, la, los, las are all
represented as DA00[el] which introduces additional ambiguity to the task. See Table 1
for a full example of text simplification.

We do not consider for classification all word types. On the one hand, words that do
not have explicit morphology according to Freeling’s tagset are not classified. However,
these words are still used in the windows of words as context relevant information.
On the other hand, word types being classified are determiners, nouns, pronouns,
adjectives, and verbs, as shown in Tables 3 and 4. Balance details in gender and number
for the different sets is detailed in Tables 3 and 4, respectively.

To generate the classification architecture we used the library keras [2] for creating
and ensambling the different layers. Using NVIDIA GTX Titan X GPUs with 12GB
of memory and 3072 CUDA Cores, each classifier has a training time of aproximately
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Table 4. Distribution of the number classes in the corpus.

Set Word Type Total Singular(%) Plural(%) None (%)

Train

Determiners 340.739 61,80 38,19 0,01
Nouns 571.053 67,75 31,92 0,33
Verbs 219.638 41,04 28,46 30,50
Pronouns 43.806 12,21 8,09 79,70
Adjetives 185.107 63,38 36,38 0,24

Development

Determiners 6.534 61,75 38,25 0
Nouns 11.025 66,93 32,68 0,39
Verbs 5.630 42,38 27,06 30,56
Pronouns 1.079 9,55 7,04 83,41
Adjetives 3.129 60,95 38,69 0,36

Test

Determiners 6.858 60,95 39,05 0
Nouns 11.347 65,51 34,14 0,35
Verbs 4.629 40,53 29,66 29,81
Pronouns 1.015 9,66 9,16 81,18
Adjetives 3.375 58,34 41,45 0,21

Table 5. Values of the different parameters of the classifiers.

Parameter Gender Number
Window size 7 9
Vocabulary size 7000 9000
Embedding 128 128
Filter size 5 7
LSTM nodes 70 70

Fig. 3. Window size.

1h calculating two epochs of the model with batch size 32 and optimizer adadelta with
default parameters.

3.2 Parameters Details

Regarding classification parameters, experimentation has shown that number and
gender classification tasks have different requirements.
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Fig. 4. Vocabulary size.

Fig. 5. Embedding size.

Fig. 6. Filter size.

Table 5 summarizes these parameters and details are given as follows.

– The best size of the window is found in 7 and 9 words for gender and number
respectively. In both cases (number and gender) increasing this size lowers the
accuracy of the system as shown in Figure 3.
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Fig. 7. LSTM nodes.

– The vocabulary size is a trade-off between giving enough information to the system
to perform the classification while removing enough words to train the classifier
for unknown words. We fix values to 7,000 and 9,000 for gender and number,
respectively. The accuracy curve varying the vocabulary size is shown Figure 4).

– An embedding size of 128 results in stable training, while further increasing this
value augmented the training time and hardware cost without impact in accuracy
(see Figure 5). The filter size in the convolutional layer produced the best results
when it was slightly smaller than the window size, being 5 and 7 the best values for
gender and number classification, respectively (see Figure 6).

– Increasing LSTM nodes up to 70 improved significantly for both classifiers (see
Figure 7).

4 Evaluation

Table 6 shows results for the classification task both number and gender. We have
contrasted our proposed classification architecture based on neural networks with
standard machine learning techniques such as linear, cuadratic and sigmoid kernels
SVMs [5], random forests [1], convolutional[7] and LSTM[9] neural networks (NN).
All algorithms were tested using features and parameters described in previous section
with the exception of random forests in which we added the one hot encoding
representation of the words to the features. We observe that our proposed architecture
achieves by large the best results in all tasks.

5 Conclusions

This paper shows a new deep learning architecture for morphology generation. Our
task is challenging because number and gender are generated from a word without
this inflection. Our architecture uses several layers including embedding, convolutional
and recurrent, which are able to outperform state-of-the-art techniques such as support
vector machines or other well-known deep learning architectures.
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Table 6. Classification results. In bold, best results.
Algorithm Accuracy

Number Gender
Naive Bayes 61.3 53.5
Lineal kernel SVM 68.1 71.7
Cuadratic kernel SVM 77.8 81.3
Sigmoid kernel SVM 83,1 87.4
Random Forest 81.6 91.8
Convolutional NN 81.3 93.9
LSTM NN 68.1 73.3
CNN + LSTM 93.7 98.4

We are able to improve accuracy almost by absolute 5% for gender classification
and over 10% for number compared to convolutional neural networks and SVMs,
respectively, which are the second-best performing systems. We reach over 98%
accuracy for gender and over 93% accuracy for number. Further work includes using
our architecture for PoS tagging and integrating it in a machine translation system.
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